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1 Introduction

Black holes occupy a central place in contemporary astrophysics and gravitational theory, not only
for their extreme physical properties but also for the profound insights they offer into the nature of
spacetime. For much of the past century, however, the inability to directly observe these compact
objects has limited our understanding to indirect evidence and theoretical predictions. This landscape
changed dramatically when the Event Horizon Telescope (EHT) Collaboration released the first re-
solved image of a supermassive black hole at the core of the giant elliptical galaxy M87 [1, 2, 3, 4, 5, 6].
The observation revealed the characteristic shadow of M87*, providing a direct visual signature of
strong-gravity effects and marking a transformative milestone in black hole research.

The prospect of Lorentz symmetry breaking in nature has gained considerable attention, largely
because several candidate theories of quantum gravity allow for such deviations. In particular, string
theory [13, 9], noncommutative field theories [7], and loop quantum gravity [11] all provide mechanisms
through which Lorentz invariance may be modified or violated at fundamental scales. This makes
the search for observational or experimental traces of Lorentz violation a promising pathway toward
uncovering hints of a deeper quantum-gravity framework operating near the Planck scale.

In this paper, we employ the set of observables proposed in Ref. [12] to examine the apparent shadow
produced by a rotating black hole in Bumblebee gravity, and to compare it with the shadow associated
with the corresponding naked singularity configuration. As a representative example, we assume
that the spacetime in the vicinity of the supermassive object Sgr A∗ is described by the rotating
Bumblebee black hole metric, while at sufficiently large distances it smoothly approaches the expected
asymptotically flat background.

2 The Schwarzschild-like solution

Bumblebee gravity is a class of vector-tensor theories in which a vector field Bµ acquires a nonzero
vacuum expectation value, spontaneously breaking Lorentz symmetry. Casana et al.[8] derived a
static, spherically symmetric black hole solution in this framework, modifying the Schwarzschild
metric through a Lorentz-violating parameter l that alters both gtt and grr components:

ds2 = −
(
1− 2M

r

)
dt2 + (1 + l)

1

1− 2M
r

dr2 + r2dΩ2 (1)

where
dΩ2 = dθ2 + sin2 θdϕ2

This solution has been widely adopted as a starting point to explore deviations from general
relativity and test Lorentz symmetry breaking in strong-field regimes. It has been extended to worm-
hole geometries, non-linear electrodynamics, and Gauss–Bonnet-type gravity. In order to perform
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Newmann Janis algorithm on above mentioned metric. We first need to goto Eddington-Finkelstein
like coordinate. The null geodesic for the transformation to Eddington-Finkelstein coordinate can be
found as follows:

ds2 = 0 =⇒ dr

dt
=

1

1 + l

(
1− 2M

r

)
The advanced Eddington-Finkelstein is given by the transformation dv = dt− dr∗.

dr∗ =
√
(1 + l)

(
1− 2M

r

)−1

dr

ds2 = −
(
1− 2M

r

)
dv − 2

√
1 + ldvdr + r2dΩ2

We can check that v is indeed null coordinate i.e. dv2 = 0 in following manner:

dvi =

(
1,−

√
(1 + l)

(
1− 2M

r

)−1

, 0, 0

)

dvidvi =
1

gtt
× 1 +

1

grr

[
−
√
1 + l

(
1− 2M

r

)−1

×−
√
1 + l

(
1− 2M

r

)−1
]
= 0

The metric tensor in the Eddingten Finkelstein coordinate could be expressed in matrix form to
illuminate the difference with Schwarzschild case:

gµν =

∣∣∣∣∣∣∣∣
−
(
1− 2M

r

)
−
√
(1 + l) 0 0

−
√
(1 + l) 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

∣∣∣∣∣∣∣∣
and the corresponding inverse metric looks like:

gµν =

∣∣∣∣∣∣∣∣∣∣
0 − 1√

(1+l)
0 0

− 1√
(1+l)

1
1+l

(
1− 2M

r

)
0 0

0 0 1/r2 0
0 0 0 1

r2 sin2 θ

∣∣∣∣∣∣∣∣∣∣
Next step in this process is to find the null tetrads which could be used to decompose this metric.
Based on the choice of normalization l · n = 1 and m · m̄ = −1,we have:

gµν = lµnν + nµlν −mµm̄ν − m̄µmν

In advanced Eddington-Finkelstein coordinate, the null geodesic is directed towards ∂v, thus let us
take that as lµ and assuming mv = mr = 0. Thus, the null tetrad can be calculated from the metric
tensor in this coordinate and is given by

lµ =

(
0,

1√
1 + l

, 0, 0

)
, nµ =

(
1, − 1

2
√
1 + l

(
1− 2M

r

)
, 0, 0

)
,

mµ =
1√
2 r

(
0, 0, 1,

i

sin θ

)
, m̄µ =

1√
2 r

(
0, 0, 1, − i

sin θ

) (2)

Performing the following transformation r′ → r+ ıa cos θ and v′ → v− ıa cos θ on tetrad leads to:
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l′a =
∂x′a

∂r
lr =

1√
1 + l

δar

n′a =
∂x′a

∂xa
na = δav − 1

2
√
1 + l

(
1− 2Mr

r2 + a2 cos2 θ

)
δar

We will need following relation for transforming the tetrad ma and m̄a

∂r′

∂θ
=

∂

∂θ
(r + ıa cos θ) = −ıa sin θ (3)

∂v′

∂θ
=

∂

∂θ
(v − ıa cos θ) = ıa sin θ (4)

Now, moving onto the tetrads ma and m̄a which could be given as:

ma =
1√
2r

(
δaθ +

ı

sin θ
δaϕ

)
and m̄a =

1√
2r̄

(
δaθ − ı

sin θ
δaϕ

)
Transforming them leads to the following form:

m′a =
∂x′a

∂xa
ma =

∂x′a

∂xθ
mθ +

∂x′a

∂ϕ
mϕ

=

(
∂x′a

∂r′
∂r′

∂θ
+

∂x′a

∂v′
∂v′

∂θ
+

∂x′a

∂θ′
∂θ′

∂θ

)
mθ +

∂x′a

∂ϕ
mϕ

= (−ıa sin θδar′ + ıa sin θδav′ + δaθ )m
θ +

∂x′a

∂ϕ
mϕ

=
1√
2r

(
δaθ + (δav′ − δar′)ıa sin θ +

ı

sin θ
δaϕ

)
(using mθ = 1√

2r
δθθ)

=
1√

2(r′ − ıa cos θ)

(
δaθ + (δav′ − δar′)ıa sin θ +

ı

sin θ
δaϕ

)

m̄′a =
∂x′a

∂xa
m̄a =

∂x′a

∂xθ
m̄θ +

∂x′a

∂ϕ
m̄ϕ

=

(
∂x′a

∂r̄′
∂r̄′

∂θ
+

∂x′a

∂v̄′
∂v̄′

∂θ
+

∂x′a

∂θ′
∂θ′

∂θ

)
m̄θ +

∂x′a

∂ϕ
m̄ϕ

= (ıa sin θδar′ − ıa sin θδav + δaθ ) m̄
θ +

∂x′a

∂ϕ
m̄ϕ

=
1√
2r̄

(
δaθ − (δav − δar′)ıa sin θ −

ı

sin θ
δaϕ

)
(using m̄θ = 1√

2r̄
δθθ)

=
1√

2(r′ + ıa cos θ)

(
δaθ − (δav − δar′)ıa sin θ −

ı

sin θ
δaϕ

)
After having calculated the relevent tetrads by Newman Janis algorithm, we will now proceed to
construct the metric tensor which takes the following:

gµν =

∣∣∣∣∣∣∣∣∣∣∣

a2 sin2 θ
r′2+a2 cos2 θ

− 1√
1+l

− a2 sin2 θ
r′2+a2 cos2 θ

0 a
r′2+a2 cos2 θ

− 1√
1+l

− a2 sin2 θ
r′2+a2 cos2 θ

(
1− 2Mr

r′2+a2 cos2 θ

)
1+l + a2 sin2 θ

r′2+a2 cos2 θ
0 − a

r′2+a2 cos2 θ

0 0 1
(r′2+a2 cos2 θ)

0
a

r′2+a2 cos2 θ
− a

r′2+a2 cos2 θ
0 1

(r′2+a2 cos2 θ) sin2 θ

∣∣∣∣∣∣∣∣∣∣∣
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The inverse is given as:

gµν =

∣∣∣∣∣∣∣∣∣∣
−
(
1− 2Mr

ρ2

)
−
√
1 + l 0 a sin2 θ

[(
1− 2Mr

ρ2

)
−
√
1 + l

]
−
√
1 + l 0 0 a

√
1 + l sin2 θ

0 0 ρ2 0

a sin2 θ
[(

1− 2Mr
ρ2

)
−
√
1 + l

]
a
√
1 + l sin2 θ 0

[
r2 + a2(cos2 θ +

√
1 + l sin2 θ)− agtϕ

]
sin2 θ

∣∣∣∣∣∣∣∣∣∣
where we defined ρ2 = r2+a2 cos2 θ. From this metric, we can write the spacetime interval as follows:

ds2 = −fdv2 − 2
√
1 + ldvdr + 2a sin2 θ(f −

√
1 + l)dvdϕ+ 2a

√
1 + l sin2 θdrdϕ

ρ2dr2 + [r2 + a2(cos2 θ +
√
1 + l sin2 θ) + a2 sin2 θ(

√
1 + l − f)] sin2 θdϕ2

= −f(dv − a sin2 θdϕ)2 − 2
√
1 + l(dv − a sin2 θdϕ)(dr + a sin2 θdϕ) + ρ2dΩ2

= −f [dt+ g(r)dr − a sin2 θdϕ− a sin2 θh(r)dr]2 − 2
√
1 + l[dt+ g(r)dr

− a sin2 θdϕ− a sin2 θh(r)dr][dr + a sin2 θdϕ+ a sin2 θh(r)dr] + ρ2dΩ2

= −f

[
dt+

ρ2

∆
dr − a sin2 θdϕ

]2
− 2

√
1 + l

[
dt+

ρ2

∆
dr − a sin2 θdϕ

]
× [(1 + a sin2 θh(r))dr + a sin2 θdϕ] + ρ2dΩ2 (using ρ/∆ = g(r)− a sin2 θh(r))

= −fdt2 − f
ρ4

∆2
dr2 − fa2 sin4 θdϕ2 − 2f

ρ2

∆
dtdr + 2af

ρ2

∆
sin2 θdrdϕ+ 2af sin2 θdtdϕ

− 2
√
1 + l

(
1 + ah(r) sin2 θ

)
dtdr − 2

√
1 + l

ρ2

∆
(1 + a sin2 θh(r))dr2

+ 2a
√
1 + l sin2 θ[1 + a sin2 θh(r)]dϕdr − 2a

√
1 + l sin2 θdtdϕ− 2

√
1 + l

ρ2a sin2 θ

∆
dϕdr

+ 2a2
√
1 + l sin4 dϕ2 + ρ2dθ2 + h2ρ2 sin2 θdr2 + ρ2 sin2 θdϕ2 + 2hρ2 sin2 θdrdϕ

= −fdt2 −
[
f
ρ4

∆2
− h2ρ2 sin2 θ + 2

√
1 + l

ρ2

∆
(1 + a sin2 θh(r))

]
dr2 + 2a sin2 θ(f −

√
1 + l)dtdϕ

+

[
2hρ2 sin2 θ + 2af

ρ2

∆
sin2 θ + 2a

√
1 + l sin2 θ(1 + a sin2 θh(r))− 2a

√
1 + l

ρ2 sin2 θ

∆

]
drdϕ

− 2

[
f
ρ2

∆
+
√
1 + l(1 + ah(r) sin2 θ)

]
dtdr + ρ2dθ2 + [r2 + a2(cos2 θ +

√
1 + l sin2 θ)

+ a2 sin2 θ(
√
1 + l − f)] sin2 θdϕ2

= −fdt2 − grrdr
2 + [ρ2 + a2

√
1 + l sin2 θ + a2 sin2 θ(

√
1 + l − f)] sin2 θdϕ2 + ρ2dθ + gtrdtdr

+ grϕdrdϕ+ 2a sin2 θ(f −
√
1 + l)dtdϕ

Thus, imposing the condition, gtr = 0 and grϕ = 0

grϕ = 0

=⇒ h(r) = −a(fρ2 +
√
1 + l(∆− ρ2))

∆(ρ2 + a2
√
1 + l sin2 θ)
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and

gtr = 0

=⇒ h(r) = −
√
1 + l∆+ fρ2

a
√
1 + l∆sin2 θ

Comparing both expressions, we thus have:
√
1 + l∆+ fρ2

a
√
1 + l∆sin2 θ

=
a(fρ2 +

√
1 + l(∆− ρ2))

∆(ρ2 + a2
√
1 + l sin2 θ)

(ρ2 + a2
√
1 + l sin2 θ)(

√
1 + l∆+ fρ2) = a2[fρ2 +

√
1 + l(∆− ρ2)]

√
1 + l sin2 θ

∆ = −fρ2 + a2(1 + l) sin2 θ√
1 + l√

1 + l∆+ fρ2 = −a2(1 + l) sin2 θ (5)

=⇒ h(r) =
a
√
1 + l

∆
(6)

The radial component of metric tensor is given as:

grr = f
ρ4

∆2
− h(r)2ρ2 sin2 θ + 2

√
1 + l

ρ2

∆
[1 + a sin2 θh(r)]

=
ρ2

∆

[
−h(r)2∆sin2 θ +

√
1 + l{1 + a sin2 θh(r)}

]
(using gtr = 0)

=
ρ2

∆

[√
1 + l − h(r)2∆sin2 θ + ah(r)

√
1 + l sin2 θ

]
=

√
1 + l

ρ2

∆
(using 6)

Thus the final expression for spacetime interval:

ds2 = −fdt2 −
√
1 + l

ρ2

∆
dr2 + ρ2dθ2 + 2a sin2 θ(f −

√
1 + l)dtdϕ

+ [ρ2 + a2
√
1 + l sin2 θ + a2 sin2 θ(

√
1 + l − f)] sin2 θdϕ2

= −fdt2 +
ρ2(1 + l)

fρ2 + a2(1 + l) sin2 θ
dr2 + 2a sin2 θ(f −

√
1 + l)dtdϕ

+ ρ2dθ2 + [ρ2 + a2 sin2 θ
√
1 + l + a2 sin2 θ(

√
1 + l − f)] sin2 θdϕ2

Finally the metric has been completely fixed following the Newmann Janis algorithm.

gµν =

∣∣∣∣∣∣∣∣∣
−f 0 0 a sin2 θ(f −

√
1 + l)

0 ρ2
√
1+l

∆ 0 0
0 0 ρ2 0

a sin2 θ(f −
√
1 + l) 0 0 Σ

ρ2
sin2 θ

∣∣∣∣∣∣∣∣∣
where

Σ = (r2 + a2)2 − a2
√
1 + l∆sin2 θ + a4l sin4 θ + 2ρ2a2 sin2 θ(

√
1 + l − 1)

with

f = 1− 2Mr

ρ2
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and

√
1 + l∆ = fρ2 + a2(1 + l) sin2 θ

= −2Mr + ρ2 + a2(1 + l) sin2 θ

= r2 + a2 − 2Mr + a2l sin2 θ

where we used:
ρ2 = r2 + a2 cos2 θ

In this metric we have event horizons at ∆ = 0 → r = M ±
√

M2 − a2(1 + l) sin2 θ whereas the
ergosphere lies at ρ2 − 2Mr = 0 → r = M ±

√
M2 − a2 cos2 θ. On direct comparison with [10] we

see that the gtϕ is different. However this is so because the bumblebee field used in Einstein Field

Equation was defined to be bµ =
(
0, b0

√
1+l

1−2M/r , 0, 0
)
. However, the Newman Janis Algorithm was

performed on metric tensor where bµ = (0, b0, 0, 0). In the limit a → 0, we recover the stationary
solution.

ds2 = −fdt2 +
1 + l

f
dr2 + r2dΩ2

with f = 1− 2M/r. However an interesting remark to be made here is that under a2 → 0, we have:

ds2 = −fdt2 +
1 + l

f
dr2 + 2a sin2 θ(f −

√
1 + l)dtdϕ+ r2dΩ2

This result differs significantly from the one described in [10]. However it can be recovered using
binomial approximation and the limit l/2 → 0 .

ds2 = −fdt2 +
1 + l

f
dr2 + 2a sin2 θ(f − 1)dtdϕ+ r2dΩ2

The inverse metric tensor takes this form:

gµν =

∣∣∣∣∣∣∣∣∣∣
− Σ

ρ2∆
√
1+l

0 0 −a
√
1+l−f

∆
√
1+l

0 ∆
ρ2

√
1+l

0 0

0 0 1
ρ2

0

−a
√
1+l−f

∆
√
1+l

0 0 fρ2

ρ2∆
√
1+l sin2 θ

∣∣∣∣∣∣∣∣∣∣
Here gtϕ = −a

√
1+l−f

∆
√
1+l

= − a
ρ2∆

√
1+l

[r2 + a2 + a2l sin2 θ −
√
1 + l∆+ (

√
1 + l − 1)ρ2]

3 Shadow Calculation

There are several aspect of the new geometry that one could study in principle. The way photons
move around the Black Hole emersed in Lorentz violating Bumblebee background field has direct
observational signature in Black Hole shadow. In this paper we will resort to studying the null
geodesics Using Hamilton Jacobi Equation. The Hamiltonian in General Relativity is defined as:

H(xµ, pµ, λ) =
1

2
pµp

µ =
1

2
gµνpµpν .

which could be used to write the Hamilton-Jacobi equation in following manner:

H

(
xµ,

∂S

∂xµ
, λ

)
= −∂S

∂λ
,

which leads to:
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1

2
gµν

∂S

∂xµ
∂S

∂xν
= −∂S

∂λ
.

1

2
gtt[∂tS]

2 +
1

2
gtφ ∂tS ∂φS − 1

2
grr[∂rS]

2 +
1

2
gθθ[∂θS]

2 +
1

2
gφφ[∂φS]

2 = −∂λS.

Here we have utilized the Kerr symmetry which ensures that the Hamiltonian does not explicitly
depend on the coordinates t, φ, or the parameter λ. So, the general form of the action could be
written as following:

S(xµ;αµ;λ) = ptt+ pφφ+ γλ+ S2(r, θ),

where

∂S

∂λ
= γ = −H =

µ2

2
.

The constants of motion E ≡ −pt and Φ ≡ pφ correspond to the energy and the angular momentum
along the z-axis, respectively, measured at spatial infinity. For rest of the paper we will use natural
units, where c = 1 and G = 1.

We now assume that the function S2(r, θ) can be separated into two parts:

S2(r, θ) = Sr(r) + Sθ(θ).

If S is constructed using this ansatz and satisfies the Hamilton-Jacobi equation, then it should cor-
rectly describe the particle’s motion. According to this form, the action function S becomes:

S(xµ;αµ;λ) =
µ2

2
λ− Et+Φφ+ Sr(r) + Sθ(θ) (7)

Substituting this into the Hamilton-Jacobi equation gives:

gttE2 + gϕϕΦ− 2gtϕEΦ︸ ︷︷ ︸
C

+grr
(
∂Sr

∂r

)2

+ gθθ
(
∂Sθ

∂θ

)2

= −µ2

It can be be further simplified:

C = − Σ

ρ2∆
√
1 + l

E2 +

√
1 + l∆− a2(1 + l) sin2 θ

ρ2∆
√
1 + l sin2 θ

Φ2 + 2a

√
1 + l − f

∆
√
1 + l

EΦ

=
−1

ρ2∆
√
1 + l

(
ρ4E2 + a2(1 + l)Φ2 − 2ρ2a

√
1 + lEΦ

)
+

a2��ρ
2 sin2 θ(f − 2

√
1 + l)

��ρ
2∆

√
1 + l

E2 + . . .

=
−1

ρ2∆
√
1 + l

(ρ2E − a
√
1 + lΦ)2 +

a2 sin2 θf

∆
√
1 + l

E2 +
Φ2

ρ2 sin2 θ
− 2

af

∆
√
1 + l

EΦ− 2
a2 sin2 θ

∆
E2

=
−1

ρ2∆
√
1 + l

(ρ2E − a
√
1 + lΦ)2 +

a2 sin2 θ

ρ2
E2 +

Φ2

ρ2 sin2 θ
− 2

afEΦ

∆
√
1 + l

− a2 sin2 θ
2ρ2 + a2

√
1 + l sin2 θ

ρ2∆
E2

=
−1

ρ2∆
√
1 + l

(ρ2E − a
√
1 + lΦ)2 +

a2 sin2 θ

ρ2
E2 +

Φ2

ρ2 sin2 θ
− 2aEΦ

ρ2
+ 2

a
√
1 + lΦ

ρ2∆
a2E sin2 θ

− a2E2 sin2 θ
2ρ2 + a2

√
1 + l sin2 θ

ρ2∆
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=
−1

ρ2∆
√
1 + l

(ρ2E − a
√
1 + lΦ)2 +

1

ρ2 sin2 θ
[aE sin2 θ − Φ]2 +

2a2E sin2 θ

ρ2∆
a
√
1 + lΦ

− a2E2 sin2 θ

ρ2∆
(2ρ2 + a2

√
1 + l sin2 θ)

= − 1

ρ2∆
√
1 + l

(ρ2E − a
√
1 + lΦ)2 +

1

ρ2 sin2 θ
[aE sin2 θ − Φ]2 − a4(1 + l) sin4 θE2

ρ2∆
√
1 + l

− 2a2E

ρ2∆
(Eρ2 − a

√
1 + lΦ) sin2 θ

= − 1

ρ2∆
√
1 + l

(E(r2 + a2)− a
√
1 + lΦ)2︸ ︷︷ ︸

P 2

+
1

ρ2 sin2 θ
[aE sin2 θ − Φ]2 − l

a4 sin4 θE2

ρ2∆
√
1 + l

− 2a2E

ρ2∆
(Eρ2 − a

√
1 + lΦ) sin2 θ

[
1− 1√

1 + l

]
Which leads to following useful form;

C +
∆

ρ2
√
1 + l

p2r +
1

ρ2
p2θ = −µ2

− P 2

ρ2∆
√
1 + l

+
1

ρ2 sin2 θ
[aE sin2 θ − Φ]2 − l

a4 sin4 θE2

ρ2∆
√
1 + l

−2a2E

ρ2∆
(Eρ2 − a

√
1 + lΦ) sin2 θ

[
1− 1√

1 + l

]
+

∆

ρ2
√
1 + l

p2r +
1

ρ2
p2θ = −µ2

scaling by ρ2∆
√
1 + l sin2 θ

− P 2 sin2 θ +∆
√
1 + l[aE sin2 θ − Φ]2 − la4 sin6 θE2 − 2a2E(Eρ2−
a
√
1 + lΦ) sin4 θ(

√
1 + l − 1) + ∆2p2r sin

2 θ + p2θ∆
√
1 + l sin2 θ

= −ρ2∆µ2
√
1 + l sin2 θ

−P 2 sin2 θ+∆2p2r sin
2 θ + r2∆µ2

√
1 + l sin2 θ − 2a2E2r2 sin4 θ(

√
1 + l − 1) =

−∆
√
1 + l[aE sin2 θ − Φ]2 + la4 sin6 θE2 + 2a2E[Ea2 cos2 θ − a

√
1 + lΦ] sin4 θ(

√
1 + l − 1)

− p2θ∆
√
1 + l sin2 θ − a2∆µ2

√
1 + l cos2 θ sin2 θ

(−P 2+∆2p2r + r2∆µ2
√
1 + l) sin2 θ − 2a2E2r2 sin4 θ(

√
1 + l − 1)︸ ︷︷ ︸

Extra term

= −∆
√
1 + l[(aE sin2 θ − Φ)2

+ p2θ sin
2 θ + a2µ2 cos2 θ sin2 θ] + la4 sin6 θE2 + 2a2E[Ea2 cos2 θ − a

√
1 + lΦ] sin4 θ(

√
1 + l − 1)︸ ︷︷ ︸

Extra term

It can be seen that the system can not be broken down via separation of variables due to the presence
of l. Thus, we use the limit a2l → 0 with binomial approximation on

√
1 + l− 1 ≊ − l

2 for radial and
angular motion. We divided both sides by sin2 θ∆

√
1 + l, thus we have:

−P 2 +∆2p2r + r2∆µ2
√
1 + l

∆
√
1 + l

= −

[(
aE sin θ − Φ

sin θ

)2

+ p2θ + a2µ2 cos2 θ

]
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It is seen from above that only the radial motion is affected due to the presence of bumblebee field.
Thus, the Carter constant should need no modification.

Q ≡ K − (aE − Φ)2

Thus, we have
∆2p2r = P 2 −∆

√
1 + l[K + r2µ2]

and ṙ = pr = grrpr =
∆

ρ2
√
1+l

pr:

√
1 + lρ2ṙ = ±

√
R with R = P 2 −∆

√
1 + l[Q+ (aE − Φ)2 + r2µ2]

and P 2 = [E(a2 + r2)− a
√
1 + lΦ]2 (8)

The θ motion is exactly the same due to the approximation made:

ρ2θ̇ = ±
√
Θ with Θ = Q− cos2 θ

[
a2(µ2 − E2) +

Φ2

sin2 θ

]
(9)

Motion is t and ϕ is given as
pt = gttpt + gtϕpϕ

Thus

ρ2ṫ =
Σ

∆
√
1 + l

E − a
(
√
1 + l − 1)ρ2 + 2Mr

∆
√
1 + l

Φ (10)

and
pϕ = gϕtpt + gϕϕpϕ (11)

therefore;

ρ2ϕ̇ = a
(
√
1 + l − 1)ρ2 + 2Mr

∆
√
1 + l

E +

√
1 + l∆− a2(1 + l) sin2 θ

∆
√
1 + l sin2 θ

Φ (12)

4 Spherical Orbit of Photon and Shadow

The condition for the spherical orbit of constant radial coordinate r, are:

ṙ = 0 r̈ = 0

which means that the null radial velocity and null radial acceleration should vanish. Before we proceed
further, we define two parameters

ξ =
Φ

E
η =

Q

E2

and consider following redefinition for photons (µ = 0):

R(r) =
R(r)

E2
= [(r2 + a2)− aξ

√
1 + l]2 −∆

√
1 + l[η + (a− ξ)2]

From (8), it is clear that condition (11) translates into:

R(r) = 0
dR
dr

= 0

Hence

ξ =
−4r∆+ a2∆′ + r2∆′

a
√
1 + l∆′(r)

9
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a = 0.998

-5 0 5 10

-5

0

5

β

α

Figure 1: The Shape of photon sphere with varying angular momenta as parameter for l = 1 is
plotted.

η =
−16r2

√
1 + l∆2(r) + 16a2r2(1 + l)∆(r) + 8r[r2 − a2(

√
1 + l − 1)]

√
1 + l∆(r)∆′(r)

a2(1 + l)3/2∆′2

+
[a4{l(

√
1 + l − 2) + 2(

√
1 + l − 1)}+ 2a2(

√
1 + l − 1− l)r2 + r4

√
1 + l]∆′2(r)

a2(1 + l)3/2∆′2

where

∆ =
r2 + a2 − 2Mr + a2l sin2 θ√

1 + l
≈ r2 + a2 − 2Mr√

1 + l

represents the photon sphere.
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[13] Kostelecký, V. A. and Samuel, S. (1989). Gravitational phenomenology in higher-dimensional
theories and strings. Phys. Rev. D, 40:1886–1903.

11


	Introduction
	The Schwarzschild-like solution
	Shadow Calculation
	Spherical Orbit of Photon and Shadow

