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1 Introduction

Black holes occupy a central place in contemporary astrophysics and gravitational theory, not only
for their extreme physical properties but also for the profound insights they offer into the nature of
spacetime. For much of the past century, however, the inability to directly observe these compact
objects has limited our understanding to indirect evidence and theoretical predictions. This landscape
changed dramatically when the Event Horizon Telescope (EHT) Collaboration released the first re-
solved image of a supermassive black hole at the core of the giant elliptical galaxy M87 [1, 2, 3, 4, 5, 6].
The observation revealed the characteristic shadow of M87*, providing a direct visual signature of
strong-gravity effects and marking a transformative milestone in black hole research.

The prospect of Lorentz symmetry breaking in nature has gained considerable attention, largely
because several candidate theories of quantum gravity allow for such deviations. In particular, string
theory [13, 9], noncommutative field theories [7], and loop quantum gravity [11] all provide mechanisms
through which Lorentz invariance may be modified or violated at fundamental scales. This makes
the search for observational or experimental traces of Lorentz violation a promising pathway toward
uncovering hints of a deeper quantum-gravity framework operating near the Planck scale.

In this paper, we employ the set of observables proposed in Ref. [12] to examine the apparent shadow
produced by a rotating black hole in Bumblebee gravity, and to compare it with the shadow associated
with the corresponding naked singularity configuration. As a representative example, we assume
that the spacetime in the vicinity of the supermassive object Sgr A* is described by the rotating
Bumblebee black hole metric, while at sufficiently large distances it smoothly approaches the expected
asymptotically flat background.

2 The Schwarzschild-like solution

Bumblebee gravity is a class of vector-tensor theories in which a vector field B), acquires a nonzero
vacuum expectation value, spontaneously breaking Lorentz symmetry. Casana et al.[8] derived a
static, spherically symmetric black hole solution in this framework, modifying the Schwarzschild
metric through a Lorentz-violating parameter [ that alters both g;; and g,, components:

2M 1
ds® = — (1—T> dt2+(1+l)1_wdr2+r2d(22 (1)

where

dQ? = db? + sin’ 0dg?

This solution has been widely adopted as a starting point to explore deviations from general
relativity and test Lorentz symmetry breaking in strong-field regimes. It has been extended to worm-
hole geometries, non-linear electrodynamics, and Gauss—Bonnet-type gravity. In order to perform

*chandra.pp@alumni.iitg.ac.in



Newmann Janis algorithm on above mentioned metric. We first need to goto Eddington-Finkelstein
like coordinate. The null geodesic for the transformation to Eddington-Finkelstein coordinate can be

found as follows:
dr 1 2M
ds* =0 — — = —[1-22
s =0 dt 1+l< 7">

The advanced Eddington-Finkelstein is given by the transformation dv = dt — dr*.

oM\ !
dr* = (1+l)<1—> dr
T

2M
ds® = — (1 — T) dv — 2V/1 + ldvdr + r*dQ?

We can check that v is indeed null coordinate i.e. dv? = 0 in following manner:

dv; = (1, 1+ <1Zi‘4>_l,o,o>

' 1 1 2M\ oM\ !
dv'dv; = — x 14+ — | — 1+l<1—> x—\/m<1—> ]:0

gtt Grr r r

The metric tensor in the Eddingten Finkelstein coordinate could be expressed in matrix form to
illuminate the difference with Schwarzschild case:

—(1-2) —/a+1 o 0
_ |- (1+1) 0 0 0
I 0 0 P20
0 0 0 r?sin?6
and the corresponding inverse metric looks like:
|
P 0
gHV — - (1+1) T+ ( - T) 0 0
0 0 1/r? 0
0 0 0 r2 siln2 0

Next step in this process is to find the null tetrads which could be used to decompose this metric.
Based on the choice of normalization [ -n =1 and m - m = —1,we have:

g = *n¥ + nHlY — mtmY — mPm”

In advanced Eddington-Finkelstein coordinate, the null geodesic is directed towards 0,, thus let us
take that as [* and assuming m, = m, = 0. Thus, the null tetrad can be calculated from the metric
tensor in this coordinate and is given by

l“—<0 . 00> n“—<1 ! (1W> 00)
7\/174-[’ ) ) ) 2\/m r ) YUy )

1 7 1 7
}L: 1 - 7”: 1 —
m T3 (O, 0, 1, sin9> , m T3 (O, 0, 1, sin9>

Performing the following transformation ' — 7 +1a cosf and v" — v —1a cos f on tetrad leads to:
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We will need following relation for transforming the tetrad m® and m®

or'’ .
50 80 —(r +1acosf) = —1asinf
o’ 0 .

50 = %(v —1acosf) =1asind

Now, moving onto the tetrads m® and m® which could be given as:

m® = \/1574 (5‘91 + ﬁdg) and mt = \/1577 (53 -

Transforming them leads to the following form:

oz'® ox'e ox'e
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S\ o o9 ov 00 90" 06 o
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(using mf = NGT:
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After having calculated the relevent tetrads by Newman Janis algorithm, we will now proceed to

construct the metric tensor which takes the following:

a?sin? g 1 d®sin?0

r'24a2 cos2 0 1+l r'24a2 cos? 0 0
2Mr
|y _ 1 _ (l2 Sin2 0 1- IS §+a cos?2 0 + (Z2 sin2 [ O
g“ = 1+l r'24a2 cos2 0 1+1 r'24a2 cos? @

1
0 0 (r'2+a? cos2 0)

___a . a 0

r’2+a? cos? 0 r’2+a? cos? 0
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(r"24a2 cos? 0) sin @




The inverse is given as:

—(1—2%7") —/1+1 0 asin20[<1—2f)\gr> —\/m]
—V1+1 0 0 ayv/1+1sin?0
Juv = 0 0 p? 0

asinQH[(l—%>—\/l+l} av/1+1sin?0 0 [r2+a2(c0829+\/1+lsin20)—agt¢}sin20

where we defined p? = 72 +a? cos? §. From this metric, we can write the spacetime interval as follows:

ds* = — fdv® — 21 + ldvdr + 2asin® 0(f — V1 + 1)dvdg + 2aV/1 + [ sin? Odrde
pPdr? 4 [r? 4+ a®(cos? @ + V1 + 1sin? 0) + a? sin? 0(v/1 + | — f)] sin? Odp?

= —f(dv — asin® 8d¢)? — 2v/1 + I(dv — asin® 8d¢)(dr + asin® 8d¢) + p*dQ>

= — fldt + g(r)dr — asin® 8d¢ — asin® Oh(r)dr]* — 2v/1 + I[dt + g(r)dr
— asin? 0d¢ — asin® Oh(r)dr][dr 4+ asin® 0d¢ + asin® Oh(r)dr] + p>dQ>

2

2 2
— _flat+ %dr _ asin? quﬁ] o141 [dt n %dr — asin? 0do

x [(1 + asin? Oh(r))dr + asin® d¢] + p*dQ> (using p/A = g(r) — asin? Oh(r))

4 2 2
— —fd? — 12 — fa?sint0de? — 2f P dtdr + 2a 1 sin? drde + 2af sin? Odtde
A? A A

2
— 21+ 1 (1 + ah(r) sin 0) dtdr — 2v/1 + z%a + asin? 0h(r))dr?
sin® 0

2
+2av/1 + Isin 0[1 + asin? Oh(r)|dedr — 2ay/1 + sin® §dtde — 2v/1 + z%

+2a?V/1 + Isin® dg? + p2d6? + h%p? sin® Odr? + p? sin? 0do? + 2hp? sin® Odrde

dpdr

4 2
= —fat? - [fzz — h2p%sin20 + 2v/1 + z%u +asin0h(r))| dr? + 2asin? 0(f — V1 + 1)dtdo

2 2 12 0
+ [2hp2 sin? 6 + 2af'0Z sin? 0+ 2av/1 + [sin? 0(1 + asin® Oh(r)) — 2aV/1 + 12 SlAn drde

2
-2 [pr + V1 + (1 + ah(r)sin? 8) | dtdr + p>d6? + [ + a*(cos® 6 + /1 + [sin® 6)
+ a*sin® 0(V1 + 1 — f)]sin® 0dg*
= —fdt* — g.pdr? + [p* 4+ a®>V1 4 1sin® 0 + a®sin® O(V/1 + 1 — f)]sin? 0d¢? + p?db + gerditdr
+ grodrde + 2asin® 0(f — /1 + 1)dtde

Thus, imposing the condition, g = 0 and g, =0

9ro =0
_a(fpP + VI I(A - p?)

e h =
(r) A(p? + a2y/1 + 1sin? 9)
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and

gtr:O
VI+IA 2
e h(r) = — +1 +'f2p
av1+IAsin® 6

Comparing both expressions, we thus have:

VIHIAL f0* alfp® +VI+HI(A=p?)
av1+1Asin?0  A(p? + a2y/1+ [sin? )
(0* + V1 +1sin? ) (VI +1A + fp?) = a[fp* + VI +1(A = p")|V1 + Isin*
fo*+a?(1+1)sin?0

A =

V141
V1I4IA + fp? = —a*(1 +1)sin® 6 (5)
V141
— hir) = (6)
A
The radial component of metric tensor is given as:
p* p*
Jrr = fﬂ — h(r)?p*sin® 6 4+ 2v/1 + lz[l + asin? Oh(r)]
2
= % [—h(r)zA sin? @ + V1 4 {1 + asin? Qh(r)}} (using g4 = 0)
2
= % [\/ 1+1— h(r)*Asin® 0 + ah(r)v/1 + I sin? 0}
2
=v1+ l% (using 6)

Thus the final expression for spacetime interval:

2
ds? = — fdt? — 1+ Z%M + p2d6% + 2asin? 0(f — 1+ 1)dtde
+ [p* + a*V1 + [sin? 6 + a®sin? 0(v/1 + | — f)] sin? d¢>
pP(L+1)

o+ a2(1+1)sin?0
+ p2d0? + [p* + a®sin? 0v/1 4+ 1 + a®sin® (V1 + 1 — f)] sin? Ad¢?

= —fdt® + dr® + 2asin 0(f — V1 +1)dtdo

Finally the metric has been completely fixed following the Newmann Janis algorithm.

—f 0 0 asin?0(f —V1+1)
0 PvIEL 0
Iy = 0 0 p? 0
asin? 0(f —V1+1) 0 0 p%sin20
where
Y= (r? +a?)? - a*V1+1Asin? 0 + a'lsin? 0 + 2p%a® sin? O(V1 +1 - 1)
with Y
f =1- p2’r

ot



and
VI+IA = fp? +a*(1+1)sin? 0
= —2Mr + p* + a*(1+ 1) sin? 6
=r?+a®—2Mr+ a*lsin® 6

where we used:
p? =712+ a’cos’

In this metric we have event horizons at A = 0 — r = M 4 /M2 — a2(1 + ) sin? § whereas the
ergosphere lies at p2 — 2Mr =0 — r = M £+ /M2 — a?cos?f. On direct comparison with [10] we
see that the g4 is different. However this is so because the bumblebee field used in Einstein Field
Equation was defined to be b, = <0, bo /#‘R}[/r, 0, 0). However, the Newman Janis Algorithm was
performed on metric tensor where b, = (0,b9,0,0). In the limit a — 0, we recover the stationary
solution.

ds* = — fdt* + 1f+ldr2 +r2dS)’

with f = 1 — 2M/r. However an interesting remark to be made here is that under a? — 0, we have:

1+1
ds? = —fdt® + ;dﬁ + 2asin? O(f — V1 + )dtde + r2dQ?

This result differs significantly from the one described in [10]. However it can be recovered using
binomial approximation and the limit /2 — 0 .

141
ds® = —fdt® + ; dr? 4 2asin? 0(f — 1)dtde + r2dQ?
The inverse metric tensor takes this form:
by 1+I—f
T PAVIT 2 0 —ax /i
g = 0 P2V 1+l 0 0
0 0 p% 0
_ gt f 0 0 fo?
A1+ pZA\/li—‘,-lsin2 [
Here ¢'* = —a VAI\J/rllT_rlf = —pQAf‘/m[TQ +a? +a%lsin?0 — V1 +1A + (V1 +1—1)p?

3 Shadow Calculation

There are several aspect of the new geometry that one could study in principle. The way photons
move around the Black Hole emersed in Lorentz violating Bumblebee background field has direct
observational signature in Black Hole shadow. In this paper we will resort to studying the null
geodesics Using Hamilton Jacobi Equation. The Hamiltonian in General Relativity is defined as:

1 1
H(x",pu,\) = gpup“ = 59“”pp,py-

which could be used to write the Hamilton-Jacobi equation in following manner:
oS S
Hxzl,— ) =——
<x " Oxh’ ) ON’
which leads to:



1,05 095 95
29 oxr oz T ON

1 1 1 1 1
39" 10S1” + 59 05 0,8 — 297 0:ST + 597 [06S]” + 5910, = =0,

Here we have utilized the Kerr symmetry which ensures that the Hamiltonian does not explicitly
depend on the coordinates t, ¢, or the parameter A. So, the general form of the action could be
written as following:

S(x; ous A) = pit 4+ pp + YA + Sa(r, 0),

where
os B 12
oN = 27
The constants of motion £ = —p; and ® = p,, correspond to the energy and the angular momentum

along the z-axis, respectively, measured at spatial infinity. For rest of the paper we will use natural
units, where ¢ = 1 and G = 1.
We now assume that the function Sa(r, ) can be separated into two parts:

Sa(r,0) = S, (r) + Sp(0).

If S is constructed using this ansatz and satisfies the Hamilton-Jacobi equation, then it should cor-
rectly describe the particle’s motion. According to this form, the action function S becomes:

2
S(a#s i N) = BN — Bt + B+ 5,(r) + 5y(60) (7)

Substituting this into the Hamilton-Jacobi equation gives:

2 2
gttEZ + gd)d)(p _ 29t¢E(p +gr7“ % + g99 % — _MZ
or 00

C
It can be be further simplified:

by VI+IA —a%(1 in? V1I4+1—
C=—-———"F?+ i a’( %?Sln 0<I>2+2a+7fE<I>
P2PAVI+1 P2 A1+ [sin” 0 AV1+1
= — (V"B + @21+ )9 — 2%V T+ IED) + VT gy
P2 AT +1 (p L+ P AAVT+1
-1 9 a®sin? 0 f o2 af a®sin’ 6
= (PPE—-aV1+19)* + 24 —2 Ed -2 E?
aviTl” Wi 22l AVILI
-1 9 a?sin? 6 o2 af E® . 2p2 +a?y/1 +1sin26
= (pPPF—aV1+19)? + 2+ — —a’sin 6 E?
pQA\/m(p ) p? p?sin? 6 AVI+1 “ p*A
-1 9 , a’sin?0 _, P2 2aE9 avV1+I1® 5 .,
:m(p E —aV1+12)” + e E +pgsin29_ e A a”Esin” 6
2, 2 .2
—a2E251n202’0 +a“v/1+41sin®0

p*A



2a2E sin2 6
p*A

—1 1 .
:m(pQE—a\/l+l@)2+m[aE81n29—¢]2+
2E2 : 29
—%(2/}2—1—0,2 1+ 1sin?6)
P

av1—+1P

1 1 , a*(1+ 1) sin* O E2
- _m(,ﬂz —aV1+1®)? + m[aEst& — P — AV
2a*F
- ,:QA (Ep* — a1+ 1®)sin’ 6
1 a*sin* O E?
=————(BE(r?+d®) —aV1+19) +———[aFsin?0 — ®)> - | ——————
AAVI T A )P2 ¢ Lt amzglebsin P AT
2a’E 1
— Ep* —aV1+1® sin29{1—]
pzA( P ) V1+1
Which leads to following useful form;
A 1
c+ A -
p2 1+lp p2p9 M
p? 1 asin? O B2

- + Esin?g— o2 — (250 72
P2PAV1I+1 p? sin29[a S ] P2 AV +1
2a°FE

1
— Ep? —aV1+1® sin29[1— }—I— 2y —pr=—
pQA( 1Y ) \/m pzmp’r p2p9 W

scaling by p?Av/1 + [sin? 6
— P?sin? 0 4+ AV1 + l[aEsin? 0 — @) — la*sin® E? — 2* E(Ep*—
a1 +1®)sin (V1 +1 — 1) + A%p?sin? 6 4 pZAV1 + Isin 0
= —p?Au*V1 +1sin?0
—P?sin® 0+A%p2sin® 0 + r? ApV1 + 1sin? 0 — 262 E*r?sin* 0(V1 +1—1) =

— AV1+1[aEsin?0 — @)% + la*sin® OE? + 20* E[Fa® cos® 0 — av/1 4 1®]sin® (V1 +1 - 1)
— paAV1 +1sin? 0 — a®? Ap®V/1 + 1 cos? sin® 0

(—=P?4+A%2 + 2 Ap2V1 + 1) sin? 0 — 2 E*r?sin (V1 +1— 1) = —AV1 + [[(aEsin? § — ®)?

Extra term

+ p2sin? 0 + a’p? cos? O sin? 0] + la? sin® OE? + 2> E[Ea® cos®  — aV/1 + 1®]sin? 0(vV1+1 - 1)

Extra term

It can be seen that the system can not be broken down via separation of variables due to the presence

of . Thus, we use the limit a?] — 0 with binomial approximation on v/1+1—1 & —é for radial and
angular motion. We divided both sides by sin? §A+/1 + [, thus we have:

—P? + A?p2 + 2 Ap?V1+1 B
AVI+I B

o \2
<aE sinf — ) + pi 4 a*p? cos? 9]
sin 6



It is seen from above that only the radial motion is affected due to the presence of bumblebee field.
Thus, the Carter constant should need no modification.

Q=K — (aF — ®)?

Thus, we have
A%p? = P? — AV1 +I[K + 4

. A .
and 7 =p" = g"p, = PENGET 4l
\/1+lp27"::|:\/§ with R:P2_A‘/l‘f‘l[Q—F(aE—@)Q—I—TQMz]

and P? = [E(a®>+r?) — aV1+19)? (8)

The € motion is exactly the same due to the approximation made:

p?0 =+VO with ©=Q —cos?0 |a*(u® — E?) + sii)jé? (9)
Motion is ¢t and ¢ is given as
P =g"p+9"py
hs : )y (VI+1-1)p*+2Mr
= WE —a AT P (10)
and
P’ = g% pi + ¢*ps (11)
therefore;
p%:a(\/m—1)p2+2MrE+\/1T1A—a2(1+l)sin29(b (12)

AV1+1 A1+ 1sin? 6
4 Spherical Orbit of Photon and Shadow

The condition for the spherical orbit of constant radial coordinate r, are:

which means that the null radial velocity and null radial acceleration should vanish. Before we proceed
further, we define two parameters
® Q

§:E U:ﬁ

and consider following redefinition for photons (1 = 0):

R(r)
2

R(r) = =[(r? +a®) —atV1+ 12 = AVI+1[n+ (a —€)?

From (8), it is clear that condition (11) translates into:

dR
Hence
- —4rA + a?A 4+ r2 A’
B a1+ 1A(r)
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Figure 1: The Shape of photon sphere with varying angular momenta as parameter for [ = 1 is
plotted.

—16r2V1 + IA%(r) 4+ 16a%r?(1 + 1) A(r) + 8r[r? — a*(V1 + 1 — 1)]V1 + IA(r)A'(r)
O (1 + 13207
@ {I(VIT+1-2)+2(V1+1—-1)}+2a2(VI+1—1—Dr2+r*V1F+1A(r)

* a2(1+1)32A%

where
r2+ a2 —2Mr + a?lsin? 0 N r2 4+ a2 —2Mr

A= ~
V1+1 v1+1

represents the photon sphere.
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